Application of a Novel Grey Self-Memory Coupling Model to Forecast the Incidence Rates of Two Notifiable Diseases in China: Dysentery and Gonorrhea
نویسندگان
چکیده
OBJECTIVE In this study, a novel grey self-memory coupling model was developed to forecast the incidence rates of two notifiable infectious diseases (dysentery and gonorrhea); the effectiveness and applicability of this model was assessed based on its ability to predict the epidemiological trend of infectious diseases in China. METHODS The linear model, the conventional GM(1,1) model and the GM(1,1) model with self-memory principle (SMGM(1,1) model) were used to predict the incidence rates of the two notifiable infectious diseases based on statistical incidence data. Both simulation accuracy and prediction accuracy were assessed to compare the predictive performances of the three models. The best-fit model was applied to predict future incidence rates. RESULTS Simulation results show that the SMGM(1,1) model can take full advantage of the systematic multi-time historical data and possesses superior predictive performance compared with the linear model and the conventional GM(1,1) model. By applying the novel SMGM(1,1) model, we obtained the possible incidence rates of the two representative notifiable infectious diseases in China. CONCLUSION The disadvantages of the conventional grey prediction model, such as sensitivity to initial value, can be overcome by the self-memory principle. The novel grey self-memory coupling model can predict the incidence rates of infectious diseases more accurately than the conventional model, and may provide useful references for making decisions involving infectious disease prevention and control.
منابع مشابه
The Application of the Grey Disaster Model to Forecast Epidemic Peaks of Typhoid and Paratyphoid Fever in China
OBJECTIVE The objectives of this study were to forecast epidemic peaks of typhoid and paratyphoid fever in China using the grey disaster model, to evaluate its feasibility of predicting the epidemic tendency of notifiable diseases. METHODS According to epidemiological features, the GM(1,1) model and DGM model were used to build the grey disaster model based on the incidence data of typhoid an...
متن کاملBrent crude oil Price Forecast with Hybrid Model of Nonlinear Grey Model and Linear Arima Waste Correction
The characteristics of crude oil and the factors affecting the price of this energy carrier have caused its price forecast to always be considered by researchers, oil market activists, governments and policy makers. Since the price of crude oil is affected by many factors, therefore, continuous studies should be done in this way so that the estimates made over time, the results are more accurat...
متن کاملA Grey NGM(1,1, k) Self-Memory Coupling Prediction Model for Energy Consumption Prediction
Energy consumption prediction is an important issue for governments, energy sector investors, and other related corporations. Although there are several prediction techniques, selection of the most appropriate technique is of vital importance. As for the approximate nonhomogeneous exponential data sequence often emerging in the energy system, a novel grey NGM(1,1, k) self-memory coupling predic...
متن کاملForecast of climatologically events using improved grey model (Case Study: Qazvin Province Climatology)
The theory of grey system is used when sufficient information of the community under study is not in hand. The grey forecast model is proper when the information variety is fix and certain. Grey model can apply some additional computations to improve forecasting activities when data is insufficient. Through using improved grey model, the assessment error decreases significantly. This study made...
متن کاملDevelopment of Markov Chain Grey Regression Model to Forecast the Annual Natural Gas Consumption
Accurate forecasting of annual gas consumption of the country plays an important role in energy supply strategies and policy making in this area. Markov chain grey regression model is considered to be a superior model for analyzing and forecasting annual gas consumption. This model Markov is a combination of the Markov chain and grey regression models. According to this model, the residual er...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014